INDEPENDENT CATALYST TESTING FOR REFINERIES

THE HIGH THROUGHPUT EXPERIMENTATION COMPANY

Still testing in the traditional way?

Evaluate commercial catalysts and optimize your operation.

- Independent catalyst and process evaluation
- Screening of relevant process conditions using your feedstocks
- Scientific consulting & data interpretation

Your benefits with hte

ESTABLISHED MARKET POSITION

- High data quality & reproducibility
- Excellent reputation with major oil companies
- Largest independent 3rd party refinery testing lab worldwide

ADVANCED TECHNOLOGY

- Feed processing flexibility from naphtha to residue and waxy feedstocks
- Advanced analytics and software solutions
- Multiple test reactors for optimized catalyst selection with high statistical significance
- Accelerated customer-specific catalyst deactivation test

EASY TO WORK WITH

- NDAs with major catalyst vendors
- Short lead times
- Highly cost- and time-efficient
- Technical consulting
- Frequent project updates with full transparency
- Experienced staff refinery services
 & support mentality

BENCHMARK
CATALYST TESTS
FOR MANY REFINING
PROCESSES:

HYDROTREATING (HDS, HDN, HDA, HDO, HDM, ULSD)

HYDROCRACKING

RESID HYDRO-PROCESSING

DEWAXING

CATALYTIC NAPHTHA REFORMING

ISOMERIZATION

BIOFEEDSTOCK CONVERSION / BIOFUELS

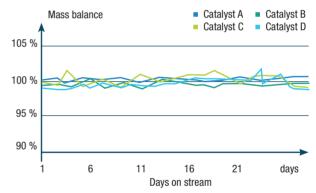
AND OTHERS

REFINERY TESTING LAB

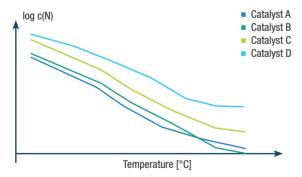
Advanced Reactor Systems and Analytical Tools

ANALYTICS FOR: GASOLINE - DIESEL - LVGO -HVGO - VGO BLENDED - RESIDUE - OTHERS

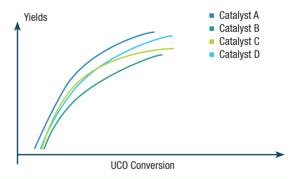
- Sulfur / Nitrogen
- Vanadium / Nickel / Iron
- Simulated Distillation
- Total Hydrogen (by NMR)
- Cetane Index
- **D86 Boiling Range**
- Density / API Gravity
- **Dynamic Viscosity**
- Cloudpoint / Pourpoint
- Aromatics (by HPLC)
- In-house distillation capabilities


EXEMPLARY RESULTS

CASE STUDY A: CATALYST RANKING


Catalyst	Α	В	C	D
Temperature [°C] @ 60 % UCO-Conversion	Base +16 °C +/- 0.6 °C	Base +9°C +/- 0.1 °C	Base +9°C +/- 0.1 °C	Base +/- 0.1 °C
Yield Gas (C1-C4) [%]	4.2	6.2	3.6	3.4
Yield Naphtha [%]	26.2	30.2	25.5	25.5
Yield Kerosene [%]*	17.1	13.8	17.6	18
Yield Diesel [%]*	18	15.6	18.5	18.3
Selectivity to middle distillates [%]*	74.7 +/- 0.4	66.6 +/- 0.3	75.3 +/- 0.3	75.0 +/- 0.3

*Boiling range Kerosene & Diesel ≠ boiling range middle distillates


CASE STUDY B: MASS BALANCE

CASE STUDY B: PRETREAT NITROGEN SLIP VS. TEMPERATURE

CASE STUDY B: YIELD DIESEL VS. UCO CONVERSION

hte REFERENCES

