METHANOL SYNTHESIS: EFFECTS IN ONCE-THROUGH AND RECYCLE OPERATION

Peter Kolb, Torsten Kaltschmitt, hte GmbH
DGMK Conference
Dresden, October 9 - 11, 2017
• The document is incomplete without reference to, and should be viewed solely in conjunction with the oral briefing provided by hte.

• Certain statements that are included in this presentation are forward-looking in nature. There are associated risks and uncertainties inherent in such statements and actual results may differ materially from those expressed or implied by the forward-looking statements.

• hte does not assume any liability for those statements. There is no requirement or obligation for hte to update these forward looking statements.
Worldwide leading provider of technologies and services for enhanced catalysis R&D

- Founded in 1999
- Operative focus on catalysis
- Center for independent competitor catalyst testing
- Largest (high throughput) catalysis laboratory worldwide with > 50 reactor systems
- Financially sound and a reliable ownership structure with BASF
- Staff > 300
- International blue-chip customer base
- Facilities located in Heidelberg, Germany
WHY METHANOL SYNTHESIS?

- Large-scale chemical (> 100 MT/y)

- Pivotal hydrocarbon feedstock
 - [Carbon raw material] → Synthesis gas → MeOH
 - MeOH → MTP/MTO/Acetic acid/Formaldehyde/FC/..

- Not as simple as it seems
 - Role of water and CO₂ cofeed
 - Optimum pressure level (equilibrium vs. practicability)
 - Optimum temperature level (kinetics vs. thermodynamics)

\[
\begin{align*}
2 \text{H}_2 + \text{CO} & \rightarrow \text{CH}_3\text{OH} \\
3 \text{H}_2 + \text{CO}_2 & \rightarrow \text{CH}_3\text{OH} + \text{H}_2\text{O} \\
\text{H}_2\text{O} + \text{CO} & \rightarrow \text{H}_2 + \text{CO}_2
\end{align*}
\]

\[\Delta n = -2\]
\[\Delta H_r = -91 \text{ [kJ/Mol]}\]
hte EXPERTISE IN METHANOL SYNTHESIS

- Competitive catalyst testing: Ranking, Influence of process parameters
- Catalyst Preparation + screening: Influence of catalyst synthesis parameters
- DOE: Discover correlations between process variables

- Full gas recycle: Process development
hte’s FULLY INTEGRATED WORKFLOW
“THE LAB 4.0” FOR HETEROGENEOUS CATALYSIS

hte’s fully integrated data workflow

- Planning
- Catalyst Synthesis
- Reactor Loading
- Testing
- Reporting
- Data Evaluation
- Analytics
- Sample Logistics
- Synthesis
- Planning

hte-company.com
METHANOL SYNTHESIS IN PARALLEL FIXED BED REACTORS

• Classical Catalyst screening
METHANOL CATALYST SCREENING
TEST RIG, LIBRARY LAYOUT, AND PROCESS PARAMETERS

- Parallel reactor system with 32 channels
- Two reactor blocks with independent heating, each for 16 liners
- Common pressure control
- Common feed supply

- Library of commercial and hte prepared catalysts
- Variation of catalyst amount → different GHSV at identical liner flow
AN OVERVIEW: TIME-ON-STREAM DATA

- Two catalysts: CAT1 and CAT2
- Process variables: temperature (red), CO₂ concentration (green), pressure (blue)
- Good reproducibility between identical fillings
- Catalyst 2 better than catalyst 1
EFFECT OF TEMPERATURE AND CO\textsubscript{2} COFEED

- Increasing activity with increasing reactor temperature
- Considerable increase in activity after introduction of 1 vol\% CO\textsubscript{2}
- Change from 1 to 2 vol\% CO\textsubscript{2} without effect
- Change from 2 to 4 vol\% CO\textsubscript{2} detrimental

At 1 vol\% CO\textsubscript{2} and 50 bar

At 200 °C and 50 bar
Effective gas utilization

Effective utilization of catalyst mass and reactor volume (STY)
METHANOL SYNTHESIS IN A SUB-PILOT FIXED BED REACTOR IN ONCE THROUGH MODE
FEATURES OF THE REACTOR SYSTEM

- Sub-pilot scale: reactor ID up to 25 mm, length 106 cm, > 100 ml catalyst possible
- Six individually controllable reactor heaters
- Coolable condenser with level-controlled, continuous liquid drain-off into weighted, larger product vessels
- Flow-controlled release of the hot reactor effluent or the cold condenser off-gas to the online GC analysis
- Pressure controller in major off-gas pipe
- Large set of feed gas modules in the major feed pipe
EFFECT OF GHSV AND CO$_2$ CONCENTRATION AT 220 °C

- Nearly constant MeOH formation rate between 2 and 4 vol% CO$_2$ and a GHSV between 3200-6500h$^{-1}$
- Activity mainly kinetically controlled
- Constant catalyst utilization
- CO conversion variable (~1/GHSV) \rightarrow reduced feed gas utilization
On MeOH Formation and CO Conversion

- Broad peak formation rate and CO conversion around 245 °C
EFFECT OF TEMPERATURE VARIATION
AT HIGH GHSV AND LOW CO₂ CONCENTRATION

...and on formation of MeOH and side products

- Increasing formation of higher alcohols and DME at maximum MeOH formation rate
- Methanol selectivity > 99%
METHANOL SYNTHESIS IN A SUB-PILOT FIXED BED REACTOR IN RECYCLE MODE
ONCE THROUGH AND RECYCLE OPERATION

<table>
<thead>
<tr>
<th>Once through</th>
<th>Parameter</th>
<th>Recycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>User defined heater temperatures + exotherm</td>
<td>Temperature</td>
<td>User defined heater temperatures + exotherm</td>
</tr>
<tr>
<td>By pressure controller in outlet</td>
<td>Reactor pressure</td>
<td>By pressure controller in (H_2) feed module</td>
</tr>
<tr>
<td>Fresh feed only</td>
<td>Feed composition and flow rate</td>
<td>Fresh and recycle feed</td>
</tr>
<tr>
<td>User defined flow rate for all feed gas modules</td>
<td></td>
<td>User defined CO feed rate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Process controlled (H_2) feed rate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>User defined recycle flow rate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recycle gas composition influenced by catalyst activity</td>
</tr>
</tbody>
</table>
• Circulating gas stream with various input and output streams
• Input: fresh H$_2$ and CO
• Output
 • liquid MeOH drained off condenser
 • H$_2$, CO and gaseous MeOH purged to analytics
• Steady state inside loop: input and output streams balanced
• For CO: fresh CO feed rate = converted CO rate + purged CO rate
• Handle to adjust the CO conversion rate: temperature
• Adjust the temperature to achieve a methanol formation rate that matches the user defined CO flow rate
RECYCLE OPERATION – INITIAL RUNS

• First run: getting started
 • 220 °C, 8.5 NL/h CO fresh feed rate
 • \(\text{H}_2/\text{CO} \) consumption rate ratio: 2
 • Ratio of \(\text{H}_2 \) and CO fresh feed rates ~ 2.5
 • \(\text{H}_2/\text{CO} \) purge rate ratio: > 2

• Second run: increasing productivity
 • 230 °C, 15 NL/h CO fresh feed rate
 • Ratio of \(\text{H}_2 \) and CO fresh feed rates ~ 2.1
 • Purge rate constant, fresh feed ratio dominated by increased consumption ratio
• Third run: maximizing productivity
 • 240 °C, 22 NL/h CO fresh feed rate
 • Ratio of H₂ and CO fresh feed rates ~ 1.5
 • CO input and output stream not balanced!

• Fourth run: stabilizing productivity
 • 240 °C, 20 NL/h CO fresh feed rate
 • Recycle rate increased from 110 to 170 NL/h
 • Ratio of H₂ and CO fresh feed rates ~ 2.1
 • CO input and output stream balanced
• CO enrichment during third run at 240 °C/20 NL/h CO
• Steady CO concentration after increase of recycle flow rate
• Little change in MeOH outlet concentration between third and fourth run → thermodynamic limit!
• Higher MeOH formation rate (CO consumption rate) possible by dilution with (MeOH free) recycle gas
ONCE TROUGH VERSUS RECYCLE - METHANOL FORMATION

- MeOH formation rate of ~900 mmol/h
- High productivity achieved with little unconverted synthesis gas
- GHSV and fresh feed gas rates decoupled → high GHSV achieved by high recycle gas flow
ONCE TROUGH VERSUS RECYCLE - BYPRODUCT FORMATION

- Ethanol most important byproduct in once through
- Methane most important byproduct in recycle
- Ethanol: condensation and drain off
- Methane: transport to reactor inlet
- Methane enrichment until methane formation rate is balanced by methane output rate through purge
TRACKING OF LIQUID PRODUCT FORMATION

- Product container on balance
- Process data logged
- Good match between
 - Gravimetric Methanol formation rate of nearly 30 g/h
 - Methanol formation rate of 900 mmol/h by online GC
 - Fresh CO feed rate (20 NL/h)
- Generation of liquid samples for further offline analysis, inspection, specific tests, ...

Weight rate \([g/h]\) = \[
\frac{\text{Weight difference \([g]\)}}{\text{Time difference \([h]\)}}
\]
SUMMARY AND OUTLOOK

- Successful operation of a sub-pilot scale reactor system for methanol synthesis in once-through and recycle mode
- Recycle operation much more efficient than once through: high productivity combined with high gas utilization
- Observed activity most likely still thermodynamically limited, operation at even higher productivity (higher recycle flow, higher H_2 and CO fresh feed rates) well within capabilities of reactor system
- Starting point for more complex, multi-component reaction networks
THANK YOU FOR YOUR ATTENTION.